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Abstract

In order to formulate and examine the central limit theorem for a binary tree
numerically, a method for generating random binary trees is presented. We first
propose the correspondence between binary trees and a certain type of binary
sequences (which we call Dyck sequences). Then, the method for generating
random Dyck sequences is shown. Also, we propose the method of branch
ordering of a binary tree by means of only the corresponding Dyck sequence.
We confirm that the method is in good consistency with the topological analysis
of binary trees known as the Horton–Strahler analysis. Two types of central
limit theorem are numerically confirmed, and the obtained results are expressed
in simple forms. Furthermore, the proposed method is available for a wide range
of the topological analysis of binary trees.

PACS number: 05.90.+m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Branching patterns are widely spread in Nature [1, 2]. Some patterns appear to be quite
similar to each other even if their generation process is different. The branching patterns
are characterized from various standpoints. For example, a property related to spatial
configurations is called geometric, including length, spatial symmetry and fractality. On
the other hand, a property based on the graph-theoretic structure (and not on spatial extent) is
called topological. Connectivity and degree distributions of complex networks are typical and
important topological structures. In particular, the topological structure of a branching pattern
can be expressed by a binary-tree graph.

A full binary tree is a tree graph (i.e. a connected graph without loops) where every node
has exactly zero or two ‘children’ (see figure 1 for reference). For simplicity, we use the term
‘binary tree’ instead of ‘full binary tree’ hereafter, since we focus on only full binary trees
throughout the paper. A node without any children is called a leaf, a node without ‘parents’
is called a root and the number of leaves is called the magnitude. Binary trees have been
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Figure 1. An example of a binary tree of magnitude 6. The numbers on the nodes represent their
orders.

investigated mainly in computer science, and frequently used in order to represent some types
of data structures such as binary search trees, binary heaps and expression trees [3, 4].

In order to derive topological characteristics of branching patterns, a method of branch
ordering has been introduced by Horton [5] and Strahler [6] (known as the Horton–Strahler
analysis). The method can measure the ramification complexity and the hierarchical structure
of branching patterns. For each node v in a binary tree T, the Horton–Strahler index (or order)
S(v) is defined recursively as

S(v) =
{

1, if v is a leaf,

max{S(v1), S(v2)} + δS(v1),S(v2), if v1 and v2 are the children of v,
(1)

where δi,j is the Kronecker delta. We use ‘order’ for individual nodes, and the ‘Horton–
Strahler index’ for the whole set of nodes. We define a branch of order r as a maximal
path connecting nodes of order r. The ratio of the number of branches of two subsequent
orders is called the bifurcation ratio, and it has been found in many branching patterns that
the bifurcation ratio takes an almost constant value for different orders, which is known as
‘Horton’s law of stream numbers’ especially in river networks [5]. Horton–Strahler analysis
has been applied to a wide range of branching patterns [7–15].

A simple model called the random model or the equiprobable model, formulated by Shreve
[16], is a finite probability space (�n, Pn), where �n denotes the sample space consisting of
topologically distinct binary trees of magnitude n, and Pn is the uniform probability measure
on �n. We also introduce a random variable Sr,n : �n → N ∪ {0} such that Sr,n(T ) represents
the number of branches of order r in a binary tree T ∈ �n. Horton’s law on (�n, Pn) is stated
in the form

E(Sr,n)

E(Sr−1,n)
→ 1

4
as n → ∞, (2)

where E(·) denotes the average on (�n, Pn), and r = 2, 3, . . . . The analytical or combinatorial
properties of Sr,n are discussed in [17–23] for example.

Wang and Waymire [24] analytically proved the central limit theorem

√
n

(
S2,n

n
− 1

4

)
⇒ N

(
0,

1

16

)
as n → ∞, (3)
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Figure 2. An example of a Dyck path of length 16. Dashed lines indicate grid lines of Z
2. All the

Dyck paths lie below the diagonal line.

where ‘⇒’ denotes convergence in distribution, and N(μ, σ 2) denotes the Gaussian
distribution with mean μ and variance σ 2. Equation (3) is equivalently expressed as

Pn

(√
n

(
S2,n

n
− 1

4

)
� x

)
→ 4√

2π

∫ x

−∞
e−8t2

dt as n → ∞.

In the same way as equation (2), we expect the following relations:

E

(
Sr,n

Sr−1,n

)
→ 1

4
, E

(
Sr,n

n

)
→ 1

4r−1
as n → ∞.

And, equation (3) is considered to be naturally generalized to

√
n

(
Sr,n

Sr−1,n

− 1

4

)
⇒ N

(
0, σ 2

r

)
, (4a)

√
n

(
Sr,n

n
− 1

4r−1

)
⇒ N

(
0, σ̃ 2

r

)
, (4b)

where σ 2
r and σ̃ 2

r are variances depending on the order r. However, the proof of equations (4)
has not been performed analytically or numerically so far, and the values of σr and σ̃r have
not been obtained for r � 3. In the present paper, we propose a method for the numerical
generation of random binary trees, using a kind of binary sequence referred to as a ‘Dyck
sequence’. Moreover, the random variable Sr,n(T ) can be calculated from the corresponding
Dyck sequence of a binary tree T. Furthermore, we show numerically the validity of
equations (4) and determine the values of σr and σ̃r .

2. Correspondence between binary trees and Dyck paths

A Dyck path of length 2(n − 1) is a sequence of points (s0, . . . , s2(n−1)) on a two-dimensional
lattice Z

2 from s0 = (0, 0) to s2(n−1) = (n − 1, n − 1) such that each point si = (xi, yi)

satisfies xi � yi and each elementary step (si, si+1) is either rightward or upward (see
figure 2).

For each Dyck path, a binary sequence of length 2(n − 1) is generated by replacing a
rightward step with ‘1’ and an upward step with ‘0’. The binary sequences generated by this

3
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(i) (ii) (iii)

(b)

(a)

Figure 3. (a) An illustration of how to get a binary tree from a Dyck path. (i) The initial Dyck path
of length 16. (ii) The Dyck path with diagonals from upper right to lower left. (iii) The diagonals
and vertical steps. The structure of a binary tree can be seen. (b) The binary tree corresponding
to (a-iii).

replacement are formally called Dyck words on the alphabet {1, 0} [25], and for simplicity we
call them Dyck sequences throughout the paper. Clearly, Dyck sequences share two properties:
(i) the total number of ‘0’ (and also ‘1’) is n− 1, (ii) cumulative number of ‘0’ is never greater
than that of ‘1’.

A correspondence between the Dyck paths of length 2(n − 1) and the binary trees of
magnitude n is explained as follows (see figure 3 for reference). (i) Start with a Dyck path of
length 2(n − 1). (ii) Draw diagonal lines from upper right to lower left which are never below
the Dyck path. (iii) Extract only the diagonals and the vertical lines from the Dyck path. It is
found that the pattern obtained from this process is topologically the same as a binary tree of
magnitude n, shown in figure 3(b). Note that each Dyck path has a one-to-one correspondence
to a binary tree. Therefore, a Dyck path possesses the same topological structure as the
corresponding binary tree.

The above method generates a binary tree from a Dyck sequence. Inversely, we can
formulate a method for generating a Dyck sequence from a binary tree. Here, a binary tree
is regarded as a graph representing a successive merging process of two adjacent nodes, and
each merging is expressed by putting two nodes in parentheses ‘( )’. Thus, the topological
structure of a binary tree T ∈ �n is fully expressed by a sequence of the leaves v1, . . . , vn

of T and n − 1 pairs of ‘( )’ (an example is shown as step (i) in figure 4). A correspondence
from a binary tree T ∈ �n to a Dyck sequence of length 2(n − 1) consists of the following
two steps. (i) Convert T into a sequence of v1, . . . , vn and ‘( )’. (ii) Eliminate ‘v1’ and ‘(’,
and replace v2, . . . , vn with ‘1’ and ‘)’ with ‘0’. A generated binary sequence proves to be a
Dyck sequence and the correspondence is one-to-one. Figure 4 illustrates this correspondence.
Note that this process is similar to an expression tree and reverse Polish notation in formula
manipulation [26].

The Horton–Strahler indices of a binary tree can be calculated through the corresponding
Dyck sequence. The method consists of the following two steps. (i) Add ‘1’ to the top
of the Dyck sequence. (ii) Replace a segment ‘m n 0’ (m, n > 0) with a single number
‘max{m, n} + δm,n’ recursively until the length of a sequence becomes 1. For r � 2, we can
obtain Sr,n(T ) by counting the number of the segment ‘(r − 1) (r − 1) 0’. Note that operation
(ii) is similar to equation (1) as shown in figure 5.
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Figure 4. An illustration of the correspondence between a binary tree of magnitude 9 and a Dyck
sequence of length 16. In step (i), a binary tree is converted into a sequence consisting of v1, . . . , v9
and ‘( )’. In step (ii), a Dyck sequence is generated by the rule of replacement.
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Figure 5. Similarity between a structure of the Horton–Strahler indices and the corresponding
calculation process.

3. Generation of random Dyck paths

A basic method for the generation of random Dyck paths is summarized in [27]. In this
section, we present a method in a little different manner from [27]. We also propose a
graphical representation for the generation process.

Let D denote the set of points in Z
2 where at least one Dyck path passes, that is,

D ≡ {(x, y) ∈ Z
2 | 0 � x, y � n − 1, x � y}. We assign ‘transition probabilities’

P→(x, y) and P↑(x, y) on each point (x, y) ∈ D. Each elementary step (si, si+1) of a Dyck
path (s1, . . . , s2(n−1)) is selected stochastically: stepping rightward with a probability P→(si)

and upward with P↑(si). A set of transition probabilities {P→(s), P↑(s) | s ∈ D} yields the
generation probability of a Dyck path (s0, . . . , s2(n−1)), which is given by

P(s0, . . . , s2(n−1)) =
2(n−1)−1∏

i=0

pi, where pi =
{

P→(si), if (si, si+1) is rightward,

P↑(si), if (si, si+1) is upward.

Since we focus on the random binary-tree model, we need to determine the transition
probabilities where every Dyck path is generated equiprobably.
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We define a monotonic path from (x, y) ∈ D as a sequence of points on D from (x, y) to
(n − 1, n − 1) where each elementary step is either rightward or upward. Clearly, the length
of a monotonic path from (x, y) is 2(n − 1) − (x + y), and a monotonic path from (0, 0) is
identical to a Dyck path. The total number N (x, y) of the monotonic paths from (x, y) is
written as

N (x, y) =
(

2(n − 1) − (x + y)

n − x − 1

)
−

(
2(n − 1) − (x + y)

n − x − 2

)

= {2(n − 1) − (x + y)}!
(n − 1 − x)!(n − y)!

(x − y + 1). (5)

For the calculation of equation (5), we employed the reflection principle familiar in random-
walk theory [28].

There are several remarks on N (x, y).

(1) For any (x, y) ∈ D, N (x, y) is positive.

(2) N (n − 1, y) = 1, when y = 0, . . . , n − 1.

(3) If (x, y) is on the diagonal (i.e. (x, y) = (k, k)), then N (k, k) = {2(n−k−1)}!
(n−1−k)!(n−k)! , which is

known as the (n − k − 1)st Catalan number [29].

(4) The number of Dyck paths (which can be expressed as N (0, 0)) is given by the (n − 1)st
Catalan number. This is a well-known result, going back to Cayley [30].

(5) N (x, y) = N (x + 1, y) + N (x, y + 1) for all (x, y) ∈ D, where we set N (x, y) = 0 if
(x, y) 
∈ D.

At each point (x, y) ∈ D, we define the transition probabilities P→(x, y) and P↑(x, y) as

P→(x, y) = N (x + 1, y)

N (x, y)
= (n − 1 − x)(x − y + 2)

(1 + x − y){2(n − 1) − (x + y)} , (6a)

P↑(x, y) = N (x, y + 1)

N (x, y)
= (n − y)(x − y)

(1 + x − y){2(n − 1) − (x + y)} . (6b)

Specifically, P→ + P↑ ≡ 1, P↑(k, k) = 0 and P→(n − 1, y) = 0. It is also proved
inductively that equations (6) realize random generation of Dyck paths.

Next, we propose a graphical representation of random Dyck paths. The number N (x, y)

can be calculated graphically as follows.

(1) Set N (n− 1, y) = 1 for all the rightmost points (n− 1, y) (y = 0, . . . , n− 1) of D. This
implies that there is only one monotonic path from (n − 1, y), which is composed only
of upward steps.

(2) For convenience, let N (x, y) = 0 for all (x, y) 
∈ D.

(3) N (x, y) is calculated from N (x, y) = N (x + 1, y) + N (x, y + 1), that is, N (x, y) is
given by the sum of the value N on the right and upper adjacent points; thus, N (x, y) is
determined from right to left, top to bottom. This implies that the monotonic paths from
(x, y) consist of the ones passing through (x + 1, y) and (x, y + 1).

Note that N (x, y) determined from (i)–(iii) is identical to equation (5). The graphical
representation and examples of generation probability are depicted in figure 6. We can roughly
confirm the uniformity of generated Dyck paths through successive canceling.
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Figure 6. An example of the graphical representation of generation probability (n = 5). The
dashed lines indicate the grid line of D. Each number near a lattice point indicates N (x, y). From
successive canceling, we can see that two paths (a and b) are generated with the same probability.

4. Numerical procedure

The cumulative distribution function of N(0, σ 2) is given by∫ x

−∞

1√
2πσ

e− t2

2σ2 dt = 1

2
erf

(
x√
2σ

)
+

1

2
, (7)

where erf(x) is the error function defined as

erf(x) ≡ 2√
π

∫ x

0
e−t2

dt.

Thus, the central limit theorems (4a) and (4b) are respectively rewritten as

Pn

(√
n

(
Sr,n

Sr−1,n

− 1

4

)
� x

)
n→∞−−−−→ 1

2
erf

(
x√
2σr

)
+

1

2
, (8a)

Pn

(√
n

(
Sr,n

n
− 1

4r−1

)
� x

)
n→∞−−−−→ 1

2
erf

(
x√
2σ̃r

)
+

1

2
. (8b)

A numerical algorithm for the calculation of σr and σ̃r is summarized as follows.

(1) Generate Dyck sequences of length 2(n − 1) randomly, on the basis of the method in
section 3.

(2) Calculate Horton–Strahler indices of the Dyck sequences.
(3) Compute values of both

√
n
( Sr,n

Sr−1,n
− 1

4

)
and

√
n
( Sr,n

n
− 1

4r−1

)
for r = 2, 3, . . . .

(4) Make cumulative distributions from the values, and then determine the values of σr and
σ̃r by fitting equation (7) to the distribution functions.

5. Results of the central limit theorem

Figure 7 shows cumulative distributions of
√

n
( Sr,n

Sr−1,n
− 1

4

)
and

√
n
( Sr,n

n
− 1

4r−1

)
generated from

105 samples with n = 10 000. The stepwise increases appear in the cases of r = 6 and 7 in
figure 7(a), because the denominator Sr−1,n of a fraction Sr,n

Sr−1,n
is decreasing with respect to r.
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Figure 8. r-dependence of σr and σ̃r . The solid and dashed lines indicate the functions 2r−4 and
2−r , respectively.

Table 1. Values of σr and σ̃r obtained by fitting.

r σr 2r−4 σ̃r 2−r −log2 σ̃r

2 0.2492 ± 0.0001 0.25 0.2502 ± 0.0004 0.25 2.00
3 0.5000 ± 0.0001 0.5 0.1397 ± 0.0003 0.125 2.84
4 0.9967 ± 0.0004 1 0.0716 ± 0.0001 0.0625 3.80
5 2.0085 ± 0.0003 2 0.0361 ± 0.0004 0.031 25 4.79
6 4.025 ± 0.002 4 0.0181 ± 0.0009 0.015 625 5.79

By fitting of the distribution function (7) to each data set in figure 7, we obtain table 1
and figure 8, which suggest the relations

σr = 2r−4, (9a)

σ̃r = 1

2r
. (9b)

Equation (9a) is in good agreement with our numerical results. Equation (9b) also seems
to be consistent with our results, although there are errors of about a few per cent (�4%)
between r and −log2 σ̃r .
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Figure 9. Comparison between analytical and numerical results of bifurcation ratios. Points denote
the numerical result, and lines denote asymptotic forms 4 − 4r

2n
for r = 1, 2, 3, 4. Numerical data

are generated from 105 samples for each n at intervals of 100.

In conclusion, the two central limit theorems are stated as

√
n

(
Sr,n

Sr−1,n

− 1

4

)
⇒ N(0, 4r−4), (10a)

√
n

(
Sr,n

n
− 1

4r−1

)
⇒ N(0, 4−r ). (10b)

Note that both equations (10) are reduced to equation (3) when r = 2.

6. Discussion

With the presented method, we can directly calculate the Horton–Strahler indices from a
Dyck sequence, without a binary tree. This effectiveness is caused by the translation between
a binary tree and a Dyck sequence. The Horton–Strahler index is based on ‘merging’ or
‘joining’ of branches in a binary tree, and a Dyck sequence generated from the method in
section 2 preserves a merging structure of the initial binary tree. Thus, the correspondence
presented in this paper is suitable for the calculation of Horton–Strahler indices, and the
similarity of the calculation process (figure 5) is obtained. It is known that there are some
other ways for a one-to-one correspondence between Dyck paths and binary trees [29, 31, 32].
However, Dyck paths generated from such other methods are not directly connected to the
Horton–Strahler indices.

Our method is quite universal for numerical calculations of the random binary-tree model,
and various numerical calculations can be done other than the central limit theorems. For
example, as shown in figure 9, our method is able to reproduce an asymptotic expansion of
the bifurcation ratio

E(Sr,n)

E(Sr+1,n)
= 4 − 4r

2n
+ O(n−2) r � 1 (11)

quite well, which has been obtained analytically by Moon [33].
The central limit theorem is an essential tool for statistical characterization of branching

patterns, but the generality of the central limit theorem is not obvious for actual branching
systems. We believe that the central limit theorem for the bifurcation ratio is robust for some
actual systems, and a lot of case studies are needed for checking the generality.

9
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Generation of random Dyck paths can be regarded as a Markov process on D, which
is called the Bernoulli excursion [34]. In addition, by taking a certain scaling limit, the
Bernoulli excursion converges weakly to a diffusion process called the Brownian excursion
[35], which is defined as one-dimensional Brownian motion {B(t) : 0 � t � 1} such that
P(B(0) = 0) = P(B(1) = 0) = 1 and P(B(t) � 0) = 1 for 0 � t � 1. We expect that some
asymptotic properties of the random binary-tree model are derived from the corresponding
scaling limit.

Furthermore, the number N (x, y) given by equation (5) is an example of the Kostka
number, appearing in some combinatorial problems [36, 37]. It is expected that such other
systems are related to a generation of random Dyck paths.

7. Conclusion

In the present paper, we propose a basic method for the numerical calculation of the random
binary-tree model. Instead of a binary tree, Dyck sequences are generated randomly by using
the transition probabilities (6). The scheme of branch ordering is also inherited to the Dyck-
sequence representation. From numerical results, we confirm that the variances σr and σ̃r

are determined as equations (9). Therefore, the validity of the central limit theorems (10) is
suggested numerically.
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